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A B S T R A C T

The ever-increasing volume and accessibility of remote sensing data has spawned many alternative approaches
for mapping important environmental features and processes. For example, there are several viable but highly
varied strategies for using time series of Landsat imagery to detect changes in forest cover. Performance among
algorithms varies across complex natural systems, and it is reasonable to ask if aggregating the strengths of an
ensemble of classifiers might result in increased overall accuracy. Relatively simple rules have been used in the
past to aggregate classifications among remotely sensed maps (e.g. using majority predictions), and in other
fields, empirical models have been used to create situationally specific algorithm weights. The latter process,
called “stacked generalization” (or “stacking”), typically uses a parametric model for the fusion of algorithm
outputs. We tested the performance of several leading forest disturbance detection algorithms against ensembles
of the outputs of those same algorithms based upon stacking using both parametric and Random Forests-based
fusion rules. Stacking using a Random Forests model cut omission and commission error rates in half in many
cases in relation to individual change detection algorithms, and cut error rates by one quarter compared to more
conventional parametric stacking. Stacking also offers two auxiliary benefits: alignment of outputs to the precise
definitions built into a particular set of empirical calibration data; and, outputs which may be adjusted such that
map class totals match independent estimates of change in each year. In general, ensemble predictions improve
when new inputs are added that are both informative and uncorrelated with existing ensemble components. As
increased use of cloud-based computing makes ensemble mapping methods more accessible, the most useful new
algorithms may be those that specialize in providing spectral, temporal, or thematic information not already
available through members of existing ensembles.

http://dx.doi.org/10.1016/j.rse.2017.09.029
Received 9 March 2017; Received in revised form 16 September 2017; Accepted 22 September 2017

⁎ Corresponding author.
E-mail address: seanhealey@fs.fed.us (S.P. Healey).

Remote Sensing of Environment 204 (2018) 717–728

Available online 29 September 2017
0034-4257/ Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2017.09.029
http://dx.doi.org/10.1016/j.rse.2017.09.029
mailto:seanhealey@fs.fed.us
https://doi.org/10.1016/j.rse.2017.09.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.09.029&domain=pdf


1. Introduction

1.1. The challenge of mapping subtle forest cover loss

Land cover change due to both human and natural disturbance
processes has a profound effect on how ecosystems function, affecting
biogeochemical (Chambers et al., 2007; Kurz et al., 2009) and hydro-
logical cycles (Seilheimer et al., 2013), habitat conditions (Spies et al.,
2010), and availability of social and economic human benefits
(González-Olabarria and Pukkala, 2011). Characterization of land cover
change has therefore emerged as a discipline with a central bearing on
many fields of study (Turner et al., 2007). The Landsat platform has
been a primary source of land change information, capable of detecting
important vegetative and disturbance patterns because of the sensor's
long history and appropriate temporal, spatial, and spectral properties
(Cohen and Goward, 2004). The Sentinel and SPOT platforms have also
proven useful for this task (e.g., (Antropov et al., 2016; Li et al., 2016;
Verhegghen et al., 2016)). The free release of all images in the Landsat
archive (in 2008) has led to the development of many new algorithms
capable of using temporally dense observations to increase the breadth,
accuracy, and precision of land cover change characteristics that can be
mapped (Wulder et al., 2012).

However, like most remote sensing problems, there are many factors
that can increase the complexity of detecting forest change, particularly
beyond the relatively straightforward stand-replacing disturbances
targeted in earlier efforts (e.g. Healey et al., 2008). Cohen et al.'s (2016)
national survey of forest disturbance processes found that low-magni-
tude forest decline was the most common cause of disturbance, parti-
cularly in the Western US. Likewise, US Forest Service inventory data
indicates that partial harvests are more commonly practiced than
clearcuts across the country (Smith et al., 2009), and the inter-agency
Monitoring Trends in Burn Severity project (Schwind et al., 2010)
found that only 36% of the area burned by 13,400 large fires in the US
between 1985 and 2010 had moderate or greater severity (Finco et al.,
2012). For any given low-magnitude disturbance, subtle removals of
forest canopy may increase spectral reflectance in both the visible and
mid-infrared wavelengths if removal of vegetation reveals brighter
soils, but reflectance may actually decrease if canopy removal increases
the contribution of shadowing to the spectral signal or if charring

occurs (Schroeder et al., 2011). Consistency of spectral response across
space and time may also be compromised by phenology, atmosphere,
topography, soil type, forest type, and forest structure.

There are several change detection algorithms which target lower-
magnitude change (e.g. (DeVries et al., 2015; Healey et al., 2006; Meigs
et al., 2015)) in very specific scenarios, but it is an open question if
Landsat or other remote sensing platforms can be used across complex
landscapes to detect the full range of disturbance magnitudes and types
without also introducing detrimental levels of false-positive (i.e.,
commission) error. It should be noted that while the term “change
detection” is used here for the process of mapping forest disturbance,
that process is very much subject to error and actually represents a
prediction of change more than a definitive discovery. The more ac-
curate “change prediction” is not used here both because of convention
and to distinguish the current monitoring task from work involved with
assessment of future events (e.g. (Seidl et al., 2014).

1.2. Multiple classifier systems

This paper presents a test of the idea that an ensemble of change
detection algorithms can be used together to obtain forest disturbance
maps of greater accuracy and sensitivity than maps from any single
automated algorithm. Wolpert and Macready (1997) demonstrated, in
their “No Free Lunch” theorems, that if an algorithm performs well in
one class of problems, it necessarily “pays” for that accuracy with de-
graded performance on a set of all remaining problems. If different
algorithms have different specialties, particularly if those specialties are
diverse, combination of those algorithms in Multiple Classifier Systems
(MCS) should improve global performance (Oza and Tumer, 2008). We
use the term “classifier” to refer to any generalizing algorithm or model
that produces a hypothesis about an object using a set of learning data.
A variety of tools have been used as classifiers across disciplines, from
logistic regression to nearest neighbor imputation and support vector
machine methods (e.g. (Sáez et al., 2013); (Kavzoglu et al., 2014)), and
this paper focuses on a variety of algorithms that make use of time
series analysis with Landsat imagery.

Analytical approaches based on MCS now play an important role in
tasks ranging from detecting computer security risks to diagnosing
disease (Woźniak et al., 2014). This paper focuses on a class of MCS

Fig. 1. Topologies of commonly used MCS. Fuser functions
may either use a combination rule, such as voting or
averaging, which requires only classifier outputs (panel a),
or they may call upon features from a learning dataset to
facilitate weighting of outputs on the basis of model per-
formance (panel b). This second approach has been termed
“stacking.”
Figure adapted from Woźniak et al. (2014).
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which applies an ensemble of classifiers to a problem simultaneously
and then uses a fusion rule to employ a meta-classification process.

Fig. 1 illustrates two types of fusion rules: one which uses a simple
combination rubric such as an average or majority (a), and one which
uses a secondary model to re-weight the classifiers according to their
performance against similar cases in the reference data (b). Random
Forests (RF; (Breiman, 2001)) is a prominent example of an MCS which
uses a combination rule. RF creates an ensemble of similar classifiers by
training decision tree-based models with random partitions of the input
data, a process called “bagging” (Breiman, 1996a). An RF prediction is
typically a simple function of how the trees vote (e.g. either the average
or majority of predictions). RF is widely used with remotely sensed data
to map ecological variables (e.g., (Cutler et al., 2007; Li et al., 2017;
Powell et al., 2010; Prasad et al., 2006)), including land cover change
(Ahmed et al., 2017; Grinand et al., 2013).

Simple combination-rule fusing processes may also be used with
heterogeneous ensembles – those that involve fundamentally different
classifiers, in contrast to the trees used by RF which differ only by the
particular subset of input data used for calibration. Engler et al. (2013)
predicted tree species using remotely sensed data and eight separate
probabilistic models. An ensemble prediction was derived by taking a
weighted average of the eight models' predicted probability of mem-
bership for each species class. Kandel et al. (2015) took a similar
averaging approach to combine and map relative occurrence indices for
wildlife. Foody et al. (2007) took the majority vote of five binary
classifiers to map the occurrence of fenland.

1.3. Ensemble-rule stacking

Wolpert (1992) is credited with the suggestion of a secondary model
(as in Fig. 1.b) as an alternative to simple combination rules. This ap-
proach, termed “stacked generalization,” or “stacking,” works by pre-
dicting the original classifiers' areas of poor performance with respect

to independent or bootstrapped reference data. Detected systematic
errors are used in the second-level classifier to improve prediction ac-
curacy. In other words, whereas the outputs of a typical RF model and
the ensembles mentioned above emphasize model agreement (using
voting or mean predictions), stacking can differentially weight dis-
senting models within an ensemble based on performance against em-
pirical reference data.

While most stacking applications to date have used a form of re-
gression as the secondary classifier (e.g. (Breiman, 1996b); (Xing et al.,
2016)), we hypothesize that using an ensemble classifier such as RF to
fuse individual maps will improve performance not only over the ori-
ginal classifiers but also over regression-mediated stacking. Schroeder
et al. (2017) found an RF-fused ensemble to be effective in the cate-
gorization of the cause of mapped disturbances. In the case of forest
change detection, using RF with a stacking approach requires assembly
of an ensemble of independent mapping algorithms, the outputs of
which can be used as the inputs to a secondary RF model calibrated
with independent reference data. Unlike the parametric methods pro-
posed by Wolpert (1992), use of an ensemble method for stacking
would not explicitly identify classifier weights in the form of regression
parameters. However, an ensemble-rule stacking process may address
overfitting of the training data, which is known to be problematic when
individual classifiers are used for stacking (Breiman, 1996b; Reid and
Grudic, 2009).

We report a test of this approach in the context of forest disturbance
detection using both Random Forests and logistic regression models to
build the secondary model that accomplishes the stacking function. This
tested approach represented an expansion of what is typically termed
“stacking,” both because of the use of Random Forests in the secondary
model, and because some of the ensembles tested contained inputs
other than the results of independent learners (some contained un-
classified imagery or topographic inputs, for example). Specifically, this
test was conducted at six diverse sites across the United States, with

Fig. 2. Study areas across the United States, labeled by World Reference System Path/Row. Forest type groups (Ruefenacht et al., 2008) are also shown, with mapped colors described in
the legend.
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error rates of individual learners compared to those of both regression-
and ensemble-rule stacking processes. An ensemble of leading change
detection algorithms was used in this test of the stacking process, with
the intent of representing the variety of available approaches instead of
cataloging the strengths of each approach. Results of this study are
relevant both for forest change detection and other complex classifi-
cation problems where compelling alternative learning algorithms
exist.

2. Methods

2.1. Study areas and reference data

The study area was the non-overlapping area of six World Reference
System (WRS-2) Landsat frames (labeled by path/row): 45/30; 35/32;
27/27; 16/37; 14/32; and 12/28 (Fig. 2). These scenes encompass a
broad range of forest types, and the covered forests are affected by a
variety of disturbance agents across a range of magnitudes. The scenes
cover areas known to have experienced industrial logging (particularly
scenes 12/28 and 16/37), insect epidemics (35/32), fires (45/30) and
wind events (27/27 and 16/37).

All Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
(ETM+) imagery for the period of 1984–2012 that was available in the
United States Geological Survey Earth Resources and Science Center
(USGS EROS) archive (as of April, 2013) was retrieved and uniformly
pre-processed. Pre-processing included conversion to surface re-
flectance (Masek et al., 2006), automated generation of cloud and cloud
shadow masks (Zhu and Woodcock, 2012), and terrain correction
provided with Landsat Level-1T products (Loveland and Dwyer, 2012).
This standardized set of all available imagery was provided to devel-
opers of each of the algorithms described in the next section.

A reference dataset characterizing historical forest disturbance
across the study area was acquired using a tool called TimeSync (Cohen
et al., 2010). This tool facilitates visual interpretation of both historical
Landsat imagery and historical finer-resolution aerial images served by
Google Earth. Among the data recorded were the start and end dates of
forest disturbances occurring at each reference point from 1986 to
2011, as well as the type of disturbance (including “harvest,” “fire,”
“forest decline,” and “wind”). Areas were identified as forests in the
reference data development process if fine-resolution imagery indicated
the presence of, or potential for developing, at least 10% tree cover, as
well as the absence of other land uses. Any reduction of forest canopy
that was perceptible through inspection of either the Landsat or fine-
resolution time series was registered as a disturbance. All observations
were based upon visual inspection of both all available Landsat imagery
and fine-resolution aerial imagery. Two interpreters were used for each
sample point, and a third was used as an arbiter if there was a dis-
agreement. While definitions of what constitutes a disturbance vary
among projects, as discussed earlier, this arbitration process for every
TimeSync observation was assumed to reduce measurement error with
respect to the definition used in this project to negligible levels.

Reference points were chosen using a simple random sample; 300
30-meter pixels per scene (1800 total). Of these locations, 1303 were
determined through TimeSync analysis to be in forested conditions. At
each forested location, observed disturbances were recorded across
27 years (1985–2011), with long-duration disturbances such as insect
outbreaks counting as disturbances in every year they were observed to
be active. This sample was acquired for three purposes. First, it formed
the basis for statistical estimation of landscape-wide disturbance rates
over time (Olofsson et al., 2014). Second, the sample was used to
evaluate the performance of disturbance maps at the pixel level, as
described below. Lastly, the reference points provided a basis for
training and evaluating empirical models of disturbance through
stacking, also described below.

Since the TimeSync reference data collection process required ex-
traction and staging of all available Landsat data, as well as compilation

of fine-resolution aerial imagery, there was incentive to gather as much
information as possible at each location. Consequently, TimeSync ob-
servations at each 1-year interval for every selected location were used
to evaluate model and algorithm performance in predicting historical
disturbances. Some degree of autocorrelation in classifier performance
may be expected across time at the same location. Forest conditions
generally remain relatively stable, and performance in one date is likely
to be similar to performance in the next, particularly when no dis-
turbance occurs. In this study, there were 26 1-year change/no change
observations at each of the 1303 forested locations. This collection of
classifier performance observations can be considered as a temporal
cluster sample across randomly allocated locations (i.e., each location is
a cluster and the observations for each year are considered secondary
sampling units). Under such a design, one would take the mean of
cluster (location) means as a measure of overall performance. Because
an equal number of observations was made at the location of each
temporal cluster (one observation for each 1-year period), each ob-
servation (year within location) was treated as having resulted from an
equal probability of selection, allowing for an unweighted analysis to
combine observations over locations. Comparisons here of model and
algorithm performance were based upon both a false-positive detection
error rate (“errors of commission”) and a false-negative detection error
rate (“errors of omission”). The false positive rate was predicted as the
number of mapped disturbances not corresponding to a detected dis-
turbance in the reference data divided by the number of all mapped
disturbances. The false-negative error rate was the number of reference
disturbances missed in the map divided by the total number of dis-
turbances observed in the reference dataset.

2.2. Base learners

Eight automated change detection algorithms, described briefly
here and more thoroughly in the cited references, were applied to the
standardized Landsat dataset described in the previous section. Each
algorithm used a subset of imagery consistent with published require-
ments and methods (cited below). Specifically, Continuous Change
Detection and Classification (CCDC) and Exponentially Weighted
Moving Average Change Detection (EWMACD) used all available L1T
imagery, and the others targeted composites of growing season ima-
gery. Individual algorithms were termed “base learners” (or “BLs) here
because they produce the basic classifications used to build various
forms of MCS. The reader is cautioned that the term “BL” does not
imply a machine learning component in any of the algorithms. BL al-
gorithms included:

1. CCDC – Continuous Change Detection and Classification (Zhu and
Woodcock, 2014) – Time series functions of all clear (cloud- and
shadow-free) pixels are fit using ordinary least squares. These
models are intended to capture seasonality, trend and breaks. Pre-
dictions are made in a forward fashion from preceding acquisitions,
and when these predictions differ significantly from actual re-
flectance values in three consecutive acquisitions, a land cover
change is inferred. In addition to producing forest change maps,
CCDC can predict cloud-free “synthetic” images (Zhu et al., 2015)
for any date. Annual synthetic outputs, instead of surface re-
flectance, were used as inputs for MIICA and ITRA (described
below). VCT and LandTrendr (also below) were each run with CCDC
synthetic imagery and, independently, with surface reflectance
imagery.

2. VCT – Vegetation Change Tracker (Huang et al., 2010; Thomas
et al., 2011) – Cloud-free annual composites are converted to a
multi-band z-score metric of similarity to local undisturbed forest
conditions. Abrupt disturbances are predicted when this metric
shifts (and stays) away from forested conditions.

3. LandTrendr – (Kennedy et al., 2010; Kennedy et al., 2012) – Cloud-
free annual composites are used to create single-band time series for
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each pixel, and these time series are then segmented into discrete
periods of growth, disturbance, or recovery. Changes may be abrupt
or gradual.

4. EWMACD – Exponentially Weighted Moving Average Change
Detection (Brooks et al., 2014) – EWMACD analyzes residuals be-
tween observed pixel values and predictions generated by fitting a
harmonic regression model (Brooks et al., 2012) to a fixed set of
designated training imagery. A user-tuned collection of statistical
process control tools, specifically tuned in this study to detect low-
magnitude (e.g., thinning) and/or long-term changes, are then ap-
plied to the residual time series to identify changed pixels at each
point in the time series.

5. MIICA – Multi-index Integrated Change Analysis (Jin et al., 2013) –
Thresholds related to spectral change magnitude and direction are
developed empirically across bi-temporal (one-year interval) per-
iods. These thresholds use four different indices (differenced nor-
malized burn ratio, differenced normalized difference vegetation
index, change vector, and relative change vector maximum), and
identify biomass increase, decrease, or no change.

6. VerDET – Vegetation Regeneration and Disturbance Estimates
through Time (Hughes et al., 2017) – Annual cloud-free composites
are segmented using a piecewise linear function. For each pixel, the
slopes of each temporal segment are interpreted as “disturbed,”
“stable,” or “regenerating,” allowing identification of fast or slow
disturbances of different magnitudes.

7. ITRA – Image Trends from Regression Analysis (Vogelmann et al.,
2012) – annual cloud-free composites are sub-divided into three
periods, and a linear regression model is fit to each period. The
emphasis is on capturing longer-term trends in forests, shrublands,
and other ecosystems.

8. Shapes-NBR – (Meyer, 2013; Moisen et al., 2016) – for each pixel, a
semi-parametric additive regression algorithm provides a smoothed
trajectory constrained to behave in an ecologically sensible manner,
assuming one of six possible “shapes”, or patterns through time.
From those fitted trajectories, parameters are generated that sum-
marize the temporal pattern, including: year(s) of inflection; mag-
nitude of change; and pre- and post-inflection rates of growth or
recovery. Originally intended only as a predictor of forest change
(Schroeder et al., 2017) instead of as a stand-alone algorithm, the
shapes algorithm was applied to a composite series of NBR images,
and disturbances were inferred through basic rules applied to in-
flection points.

Each of these algorithms was adapted to produce year-by-year
binary (“disturbed” or “not disturbed”) maps of forest disturbance,
which were compared to similarly simplified TimeSync observations.
Each year of mapped longer-term disturbance events was labeled
“disturbed.” For every year a pixel was classified as “disturbed” by a
particular algorithm, the variables listed in Table 1 were also saved as
potential inputs to ensemble models. Because time series algorithms
frequently exhibit errors in the first and last time periods, only change
maps from 1985 to 2011 (matching the 27 years of TimeSync ob-
servations) were used in this process, ignoring outputs for 1984–85 and
2011–12. The year 2012 was the endpoint of the time series because
that was the most recent complete year of Landsat acquisition at the
initiation of the project. Also, a composite map (called the “Union”
map) was created in which a pixel was labeled as “disturbed” in a given
1-year period if any of the eight algorithms labeled it so.

2.3. Stacking of base learners and other spatial predictors

The stacking process was pursued here one year at a time, with date-
neutral models predicting binary “disturbed/non-disturbed” status
based upon varying ensemble inputs. Both logistic regression and RF
models were tested and trained with the TimeSync reference dataset
described above. Inputs for the logistic model were determined through
a stepwise model selection process based upon Akaike's Information
Criterion, operating upon a list of potential inputs that included the BL
outputs listed in Table 1, plus a forest type group map (Ruefenacht
et al., 2008; see Fig. 2), the most basic topographic variables (slope,
elevation, and aspect), and Landsat imagery, composited as described in
Section 2.4, for both the beginning and ending year of the year-to-year
period. Logistic regression modeling was carried out using the glm
function of the R statistical programming platform (R Core Team,
2015).

Stacking with a RF fusion rule was also carried out in R, using the
randomForest package (Liaw and Wiener, 2002). Five different sets of
inputs were tested to better understand contributions of particular input
classes: 1) Landsat only – a single composite Landsat image (created
using methods described in Section 2.4) from both the “before” and
“after” years of the 2-date period; 2) BLs alone – the binary change
maps from each change detection algorithm and ancillary outputs listed
in Table 1 for all pixels labeled as “disturbed”; 3) BLs + Landsat –
combination of set #s 1 and 2; 4) BLs + Topography + Forest Type –
combination of #2 and the pixel's slope, elevation, and cos (aspect),
plus, the value from the Ruefenacht (2008) forest type group map (see

Table 1
Base learner output variables.

Base learner Output Variable type

CCDC Magnitude of spectral change Continuous
EWMACD Magnitude of spectral change Continuous
ITRA Magnitude of spectral change Categorical (high, medium, low)
LandTrendr-surface Reflectance Magnitude of spectral change Continuous

Duration of declining segment Continuous
LandTrendr-synthetic Magnitude of spectral change Continuous

Duration of declining segment Continuous
MIICA Magnitude of spectral change Categorical (biomass increase, decrease, no change)
VCT-surface reflectance NBR change magnitude Continuous

NDVI change magnitude Continuous
“udist” magnitude Continuous

VCT-synthetic NBR change magnitude Continuous
NDVI change magnitude Continuous
“udist” magnitude Continuous

Shapes Shape Type Categorical (flat, decreasing, increasing, jump, growth-to-decline, decline-to-growth)
Absolute spectral change magnitude Continuous
Relative spectral change magnitude Continuous
Duration of declining segment Continuous
Prior rate of change Continuous
Posterior rate of change Continuous
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Fig. 2); 5) BLs + Landsat + Topography + Forest Type – combination
of the inputs for model #s 1 and 4. Initial testing showed that results
were stable at and above 500 decision trees per model, so each of these
combinations was run with 500 trees.

Two measures were taken to enhance the modeling process for
stacking using both RF and logistic regression. First, the model-building
dataset was restricted to only those 1-year observations where a dis-
turbance was either recorded in TimeSync or predicted by at least one
BL (or both). Initial testing suggested that skewing the model-building
dataset in this way toward potentially confusing cases improved model
performance. Effects of this model-building step were not formally
evaluated, however. Secondly, in recognition of the improbability of
using stacking to predict disturbances detected by zero BLs, all such
pixels (that is, pixels outside of the union map described in Section 2.2)
were automatically labeled as “not disturbed,” regardless of what the
model would have determined for those cases.

Error assessment explicitly accounted for both of these steps in as-
suring that all algorithms and models were assessed at each 1-year in-
terval at all 1303 forested TimeSync sample points. Specifically, all of
the reference sample points automatically labeled “undisturbed” (in
both the RF and logistic models) because they fell outside of the union
of BL disturbance outputs were simply compared to their TimeSync
label to determine classification success or failure. These cases were
either counted as true negatives (not in error) or false negatives (i.e.,
errors of omission). For the remaining sample units (that is, those used
for model calibration by virtue of falling in the union of mapped dis-
turbed pixels), evaluation of disturbance predictions used either: 10-
fold cross-validation for the logistic model; or (for RF models) com-
parison of TimeSync interpretations against predictions created from
decision trees for which the individual data points had not randomly
been selected to calibrate (also called “out-of-bag” predictions). To
summarize, despite the fact that not all TimeSync observations were
used to train the ensemble models, every member of the TimeSync
sample was used to evaluate error in each BL and ensemble model

output.

2.4. Temporal sliding of inputs to harmonize change maps and reference
data

Because the above stacking process is applied on a year-by-year
basis, disagreement among BLs about exactly when a disturbance oc-
curs can be a source of noise in the stacking model. There is variability
among the image selection processes used by the change detection al-
gorithms described above: some use all cloud-free pixels, and some use
a single date annually. For single-date algorithms, if a forest fire occurs
on 01 July of a particular year, it will be detected in that year (assuming
it is detected at all) if the representative image was acquired in July or
August. If a June image is selected, the fire would be mapped in the
following year. Thus, disagreement among algorithms in year of de-
tection might be a function of image date selection rather than differing
classification criteria. Image date discrepancies may also affect agree-
ment with TimeSync reference data, potentially introducing further
noise and degrading performance of the stacking model.

An approach that is here called “sliding” was used to minimize ef-
fects of temporal mismatch issues. The year of every disturbance de-
tected by either a BL or in the reference data was allowed to “slide” one
year forward or backward depending on which interval showed the
larger increase in shortwave infrared reflectance (Landsat band 5) for
that pixel. Reflectance differences were determined through a surface
reflectance composite developed from the cloud-free pixel closest in
time to a scene-wide target date. This composite target date was the
center of the period in the annual scene-level NDVI curve (derived by
collapsing MODIS NDVI, 2000–2015) when NDVI rose above its 60th
percentile threshold (generally in the summer). Target Julian dates
were: 205 (Path 12 Row 28); 201 (P 14 R 32, P 35 R 32, and P 16 R 37);
209 (P 27 R 27); and 237 (P 45 R 30).

It should be emphasized that disturbances were not “double-
counted”: sliding simply adjusts the year of predicted disturbance in a

Fig. 3. Performance of each of the tested BLs, RF model
combinations and the best logistic model in terms of lowest
resulting omission and commission error rates against the
complete TimeSync reference dataset. Model outputs are
represented as a series of points because both RF and lo-
gistic models allow flexible class inclusion rules. Points
closest to the origin (0,0) have the lowest rates of omission
and commission error.
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way that increases likelihood of alignment among mapping approaches.
Sliding was not practiced for long-term disturbances stretching across
more than four years. Ensemble-rule models were also run and sub-
jected to the above error assessment without sliding to verify that the
process improved prediction accuracy.

3. Results

Fig. 3 shows the accuracy of several types of classifiers against our
reference sample of TimeSync observations at the six study sites. These
classifiers included: the binary (“disturbed”/”not disturbed”) output of
each of the BLs, represented as individual points; the stacked ensemble
map using a logistic regression fusion rule; and stacked ensembles using
RF decision rules for each of the five sets of inputs described above
(Section 2.3). Ensemble model results are displayed in Fig. 3 as a linear
series of points representing performance at progressively more re-
strictive disturbance classification thresholds (i.e., requiring increasing
unanimity among decision trees for RF models and increasing prob-
ability values for the logistic regression-rule model).

Table 2 summarizes the model results given in Fig. 3 by focusing on
performance at the decision tree threshold (i.e., the proportion of de-
cision trees required to label a pixel “disturbed”) that balanced the
omission and commission error rates in the validation dataset. In other
words, Table 2 expresses performance along the 1:1 line in Fig. 3.

Rates of omission and commission were much greater for each of the
BLs against TimeSync's broad definition of disturbance than they were
against the data in their published validations (cited earlier). The
average annual disturbance rate across the TimeSync sample was 6.2%.
Some algorithms skewed conservative with smaller rates of commission
and higher omission (VCT, MIICA, CCDC), while others were the op-
posite (particularly LandTendr). Omission and commission error rates
were most balanced for VerDET and ITRA. Smoothing the input time
series with “synthetic” imagery produced by CCDC reduced commission
error and increased omission error for VCT, while it only increased
omission error for LandTrendr. MIICA, too, used CCDC-processed syn-
thetic imagery, but was not run with surface reflectance for compar-
ison.

The “Landsat only” RF model, which like the other ensemble models
benefited from being trained with TimeSync data (and a definition of
disturbance directly corresponding to that used in the validation da-
taset), produced marginally smaller error rates than most of the BLs.
The two stacking approaches (RF- and logistic regression-rule fusion)
using the BL outputs as independent variables resulted in much more
accurate models than the Landsat-only model (Table 2). The RF-rule
classifier produced lower omission and commission rates than the more
conventional logistic regression-rule approach. In general, the RF-rule
classifiers gained slight performance increases as additional inputs were
added.

The RF models each performed slightly better with respect to the
reference data when temporal “sliding” of BL- and TimeSync-detected
forest changes was practiced prior to the stacking procedure. Assessed
at the point where omission and commission error rates were balanced
(see Fig. 3 and Table 2, both of which included the effects of sliding),

not sliding reduced the performance of the best model from 40% to
42%.

While the results of this paper rely primarily upon the designed
error assessment shown in Fig. 3, it was important to verify that the
model predictions could be translated into actual maps. Fig. 4 illustrates
mapped results for 2008 and 2009, using the model with the smallest
assessed balance point between omission and commission error Fig. 3:
BLs + Landsat + Topography + Forest Type) in Scene 45/30
(Oregon). Different colors represent different proportions of decision
trees in the ensemble “voting” for a disturbance prediction. Using de-
cision tree agreement as a metric of Random Forests' certainty in re-
lation to the data used to train the model, the areas of greater certainty
of disturbance (red and orange classes) clustered into patches asso-
ciated with forest harvest and a large forest fire (2009). Some of these
areas were also predicted as “disturbed” in either preceding or sub-
sequent years, although usually by a minority of decision trees (light
gray in Fig. 4).

Fig. 5 shows an aggregated 2005–2011 disturbance map created
from outputs such as those in Fig. 4. The year of any pixel labeled as
“disturbed” by more than either 50% (upper map) or 75% (lower map)
of decision trees was labeled with the year of the detected event. Using
the probability structure created by the stacking process in this way
allows relatively large changes in the area mapped as “disturbed”
(specified in the center of Fig. 5) without major changes to the map's
spatial patterns. Additionally, the impact of such changes on accuracy
can be directly inferred from the series of model omission/commission
points shown in Fig. 3: more conservative thresholds result in reduction
of commission error, but also cause an increase in omission error.

4. Discussion

Implications of this experiment are discussed here in terms of: 1)
how the results suggest a different paradigm in both forest change de-
tection in particular and resource mapping in general (Section 4.1); 2)
how stacking offers a simple means for aligning maps with independent
estimates based on an underlying probability structure (Section 4.2),
and; 3) how burgeoning cloud computing platforms may accommodate
both the sharing of code and large computing resources needed to
realize the accuracy benefits illustrated in this paper (Section 4.3).

4.1. Stacking and change detection

The definition of “disturbance” is not absolute. The events that kill,
injure, or remove trees exist on temporal, spatial, and magnitude gra-
dients (Masek et al., 2015), and the point on those gradients where a
disturbance becomes meaningful varies depending upon the type of
disturbance and the particular application, as well as disciplinary per-
spectives. The relativity of what constitutes a “meaningful” disturbance,
and the prevalence mentioned earlier of subtle and complex forest
changes, create important potential for “generalization error,” which is
the error that results when an algorithm is applied outside of the realm
for which it was optimized. While each of the BLs has performed well in
published validation exercises, apparent error when measured against
our highly inclusive disturbance reference database was quite large,
with omission and/or commission error rates often above 60%.

It is instructive that an RF model built with only a composite “be-
fore” and “after” Landsat image performed with slightly reduced error
rates against the TimeSync reference data than most of the BLs. This
suggested the role of generalization error: the RF model was trained
with data perfectly aligned with the validation data, while algorithms
accessing much more imagery were calibrated independently and were
therefore searching for slightly different disturbance profiles. This in
itself may be an advantage of stacking – outside of any improvements in
the acuity of the change detection process, the secondary model aligns
the map classes with the definitions built into a specific application's
reference data. It will rarely be possible for a general user to “re-tune”

Table 2
Model performance when a decision tree agreement threshold for classification of dis-
turbance is used that balances omission and commission error in the validation dataset.

Model Error rate (omission = commission)

Landsat only 0.65
BLs alone 0.44
BLs + Landsat 0.44
BLs + Topography + Forest Type 0.43
BLs + Landsat + Topography + Forest

Type
0.40

Logistic 0.54
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the search profile of an individual BL, despite the increasing trend to-
ward open-source code. With stacking, a user with an empirical re-
ference dataset should be able to access publically available change
classifiers in a way that is harmonized with their own needs.

Beyond alignment advantages, our results suggest that stacking of
multiple BLs also increases change detection acuity. Adding BL outputs
greatly improved classifier performance above using image pairs alone,
with selected supplementary inputs (forest type map, topography)
generating further improvements (Table 2). The apparent value of
supplementary inputs in change classification was also seen by
Schroeder et al. (2017) and Kennedy et al. (2015), who used Landsat
time series with RF to predict disturbance type (fire, harvest, etc).

It was initially hypothesized that an ensemble of classifiers with
diverse specialties, if integrated with an effective “fusion” rule (see
Fig. 1), could be used to improve change classification. Recent research
has demonstrated that Landsat-based change detection algorithms do
indeed produce diverse products, often varying not only in spatial
pattern but in proportion of the landscape labeled as “disturbed”
(Cohen et al., 2017).The current study focused on estimating the per-
formance value of stacking, leaving investigation of the specific spe-
cialties of different BLs to future work. Results of such an investigation
could provide a basis for narrowing the ensemble if computing costs
were restrictive. Furthermore, understanding how existing algorithms
and ensembles perform on different classes of problems may enable
targeting of new ensemble members toward areas of aggregate poor
performance.

The tested BLs vary in their use of time series context as well as the

spectra they consider, resulting in different patterns of omission and
commission error (Fig. 3). While the focus of this study did not require
controlling for the effect of different temporal and spectral parameters
among the algorithms, it is nevertheless possible to observe the effects
of different temporal smoothing options for VCT and LandTrendr. Each
was run upon an annual time series of both surface reflectance and
synthetic imagery produced through CCDC (Zhu et al., 2015). Synthetic
CCDC images allow an atmosphere-free and phenologically controlled
look at the landscape, although the signal associated with disturbances
missed by CCDC is minimized along with atmospheric noise.

As might be expected, VCT showed a corresponding reduction in
commission error and an increase in omission error with synthetic
imagery. LandTrendr's output had more omission error with synthetic
imagery, but not the expected decreased commission error. More re-
search is needed into the value and effect of synthetic imagery when
used with complex time series analyses. Since input bands clearly have
an impact on algorithm performance, it would also be of interest to
explore alternative ensemble configurations. Under the theory that
ensembles add value when member classifiers are informative in non-
overlapping domains, it might be possible to create a diverse and ef-
fective ensemble for use in stacking simply by applying a series of
different threshold and noise filtering parameters when running a single
algorithm across a series of bands or transformations.

Traditional parametric stacking, using logistic regression, generated
more errors than ensembles using a secondary (RF) ensemble process as
the fusion rule. This result is consistent with the reduction of overfitting
often attributed to ensemble learners such as RF, but gains in model

Fig. 4. Predicted disturbance in an area in Oregon (Path/Row 45/
30) mapped in successive years with the BLs + Landsat
+ Topography + Forest Type ensemble model. Different colors, as
indicated in the legend, were assigned to different ranges of deci-
sion tree agreement for the RF model used in the stacking process.
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performance must be weighed against the inability of “black box”
machine learning algorithms to explicitly parameterize contributions
and interactions among independent variables. In applications focusing
on these exploratory questions rather than map accuracy, parametric
fusion rules may indeed be attractive.

The benefits of “sliding” – the procedure proposed here for in-
creasing temporal alignment of disturbance dates among BLs and re-
ference data – are more ambiguous. When this laborious process was
implemented with the lowest-error RF-based ensemble model, the
average classification improvement was only on the order of a 1.85%
reduction in omission and commission. This level of improvement may
not be practically beneficial, and in any case should be considered
against substantial additional computing costs.

As mentioned earlier, disturbances resulting in partial canopy re-
moval and subtle spectral changes are common in many ecosystems and
represent the majority of error and disagreement among change de-
tection algorithms (Cohen et al., 2017). The distribution of BL perfor-
mance in Fig. 3 suggests that change detection algorithms and models
can successfully detect these changes (i.e., achieve low levels of omis-
sion), but doing so requires relaxation of thresholds for the “disturbed”
class, which results in additional commission error. The 30-m spatial
grain of the Landsat platform may be a limiting factor; localized events
affecting only a small portion of the ground field of view may result in
minor spectral changes that are easily confused with noise. It is note-
worthy, however, that stacking with RF, and with logistic regression to
lesser extent, seems to improve the terms of this tradeoff. Omission
error is not eliminated, but its reduction comes with a smaller cost in

commission error (Fig. 3).
The potential uses of stacking extend well beyond the Landsat

platform and beyond the task of change detection. There is nothing
Landsat-specific about the tested process, and in fact the topographic
independent variables contributing to the best-performing (i.e., lowest-
error) model in this paper were not Landsat-based. Stacking could be
performed upon change detection maps predicted from a dense time
series composed of harmonized Sentinel-2 and Landsat data, or one
might map changes using each sensor in parallel and then integrate the
outputs through stacking. The focus of this paper was forest change
detection, but stacking could be applied to classification problems in-
volving detection of any surface feature, and similar performance
benefits above individual BL algorithms should be apparent whenever
the ensemble contains inputs which are both informative and non-
overlapping.

4.2. Stacking as an instrument of matching map totals to inventory totals

Map totals or pixel counts are frequently used to estimate the area of
a particular cover class or a population parameter such as mean bio-
mass. However, many of these applications address uncertainty in an
ad-hoc manner that does not correctly reflect precision at the popula-
tion level (Stahl et al., 2016). Good practice guidelines suggest that
inferences about populations be based upon probability samples of
high-quality reference data (Olofsson et al., 2014), and that maps may
be useful as auxiliary variables in the reduction of sample-based un-
certainty (Stehman, 2009). It is only under specific sets of assumptions

Fig. 5. An example of modifying the amount of change displayed in
a map by varying the RF agreement threshold associated with the
model used to implement the stacking process. Mapped disturbance
in each year is color-coded, and the percent area reduction for each
year under the larger agreement threshold is displayed in the le-
gend by year.
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e.g. (McRoberts et al., 2014) that remotely sensed maps may themselves
form the basis for the estimates.

This raises the question of how to reconcile authoritative popula-
tion-level estimates predicted from designed samples with the spatial
context provided by remotely sensed maps. When maps are combined
as spatial inputs to ecosystem models, an approach called “PDF
weaving” can be used with Monte Carlo error simulations to ensure
agreement between maps values and design-based estimates (Healey
et al., 2014). Specifically, constraints built into systems of linear
equations are used to construct probability density functions (PDFs)
that control how map values are varied in the Monte Carlo process, such
that: 1) the probability of error being simulated for any individual map
pixel is determined by pixel/plot validation metrics, and 2) when all
pixels are added together for a given error simulation, they equal a
value drawn randomly from a distribution defined by the standard error
of the authoritative population estimate (Healey et al., 2014). This
approach is not useful, however, when a single visualization is required.

One possible approach is to change the number of map units labeled
as a particular class (in the current context, “disturbed” or “not dis-
turbed”) so that the area associated with that class matches the in-
dependent estimate (or upper/lower confidence bounds). Stacking with
either logistic regression or RF fusion rules produces class association
values within a [0,1] interval that can at least loosely be interpreted as
ordinal probabilities. As illustrated in Fig. 5, if more of a particular class
is needed to ensure map agreement with independent estimates, more
pixels can be added by dropping the probability threshold used for
classification (Freeman and Moisen, 2008). The threshold needed for
any targeted area of disturbance (or other type of mapped class) should
be evident from the cumulative distribution function of decision tree
agreement proportions across the map. Fig. 3 indicates that changing
such thresholds offers predictable tradeoffs in the balance of false po-
sitive and false negative error rates, but Fig. 5 suggests that altering
thresholds for the purpose of synchronizing mapped and sample-based
estimates does not fundamentally alter spatial patterns apparent in the
map.

Geospatial filters (implementing neighborhood functions, or
minimum map units, for example) could alternatively be used to in-
crease or decrease the number of pixels labeled as “disturbed,” but such
a process would, computationally, be less direct than simply choosing a
decision tree agreement threshold from a cumulative distribution
function of voting scores. More importantly, addition or elimination of
“disturbed” pixels should ideally be targeted by some underlying
measure of likelihood; this is achieved with the RF stacking scores, but
not through simple geometric filters.

4.3. New methods and new strategies

While this investigation demonstrated performance benefits of ag-
gregating multiple classifiers in an ensemble-based learning system,
there are practical barriers to broader implementation:

1) Access to code for multiple algorithms – complex image-processing
algorithms have traditionally been, if not proprietary, difficult to
share because of dependencies on local system properties;

2) Image acquisition and pre-processing costs – a few of the algorithms
described here leverage every available clear pixel-level observation
in the Landsat archive, representing massive system demands;

3) Computation volume – running multiple algorithms and then im-
plementing a secondary fusion model clearly represents a higher
computation load than a single classifier.

As cloud computing becomes more common in remote sensing,
these barriers to stacking are becoming less important. Cloud-based
platforms typically offer access to massive remote computing resources,
making computationally intensive approaches like stacking more fea-
sible. The sharing of ideas enabled through such platforms may be just

as important. The authors of the algorithms included in this study have
committed to making their processes easily accessible through Google
Earth Engine (GEE). GEE enables adroit and standardized access to the
entire USGS EROS Landsat archive (including surface reflectance pro-
ducts), with an application programming interface (API) allowing
modular (and shareable) approaches to data processing. Easy sharing of
code and standardized system properties on platforms such as GEE may
both fertilize innovation and provide access to the algorithms needed to
build an ensemble.

Any shift toward ensemble methods may foster new attitudes in
algorithm development. To the extent that ensembles benefit from the
addition of informative BLs that are uncorrelated with existing mem-
bers, it may be productive to develop algorithms targeting elevated
performance in narrow, under-represented problems rather than per-
formance across a range of problems already addressed by other pro-
cesses. Wolpert and Macready's (1997) “No Free Lunch” theorems
suggest that the range of a classifier's optimization is limited. With the
potential of stacking to weight ensemble member responses according
to their empirically determined niche, an algorithm that does only one
thing well can be a critical advance if that one thing is a unique con-
tribution.

5. Conclusions

Comparisons against a reference dataset in six areas across the US
demonstrated that the performance of multiple forest change detection
algorithms can be improved through their inclusion in a learning en-
semble. Any algorithm will suffer from generalization error when ap-
plied to a problem outside of the conditions for which it was optimized.
In light of the highly variable and complex spectral response of different
types of forest disturbances across diverse ecosystems, the potential for
generalization error in this field is high. One advantage of stacked
generalization, or “stacking” (Wolpert, 1992), is simply alignment of
classifier outputs with the definitions and parameters implicit in the
training data collected for the application.

For the reference data collected for this study, which included subtle
changes often ignored by automated change detection processes,
stacking produced results superior to those of any BL. Conservative BLs
minimized mapping of false changes (with commission error rates in
the 20–30% range), but did so at the cost of omission error rates around
80–90%. More inclusive BLs somewhat reduced omission error
(60–75%), but they typically included false positive errors at rates
above 75%. Stacking greatly reduced commission error while keeping
omission error relatively small; stacking with a conventional parametric
model balanced omission/commission error at 54%, while stacking
with RF models reduced error rates to approximately 40%. The addition
to the stacking ensemble of non-BL inputs, such as topography and raw
imagery, improved omission and commission error rates by approxi-
mately 4%. Because different BLs use different imagery and may map
detected land cover changes in different years, maximizing cross-algo-
rithm agreement by “sliding” of detected changes forward or backward
by a single year may be useful. However, our tests showed only mar-
ginal accuracy improvements, which may in some applications not be
worth the additional processing.

It is likely that advantages of stacking observed here will be robust
beyond forest change detection. To the extent that detection of complex
or subtle surface phenomena require specialized signal processing, en-
sembles may facilitate combination of different algorithms' specialties
in the context of a single, more general application. Stacking through
comparison with empirical data provides an effective approach to
weighting alternative learning algorithms. As cloud computing enables
greater access to different algorithms and allows more efficient pro-
cessing of large datasets, the advantages of ensemble methods are likely
to become more relevant.
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